Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.220
Filtrar
1.
Langmuir ; 40(14): 7471-7478, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38554266

RESUMO

Neuraminidases (NA) are sialic acid-cleaving enzymes that are used by both bacteria and viruses. These enzymes have sialoside structure-related binding and cleaving preferences. Differentiating between these enzymes requires using a large array of hard-to-access sialosides. In this work, we used electrochemical impedimetric biosensing to differentiate among several pathogene-related NAs. We used a limited set of sialosides and tailored the surface properties. Various sialosides were grafted on two different surfaces with unique properties. Electrografting on glassy carbon electrodes provided low-density sialoside-functionalized surfaces with a hydrophobic submonolayer. A two-step assembly on gold electrodes provided a denser sialoside layer on a negatively charged submonolayer. The synthesis of each sialoside required dozens of laborious steps. Utilizing the unique protein-electrode interaction modes resulted in richer biodata without increasing the synthetic load. These principles allowed for profiling NAs and determining the efficacy of various antiviral inhibitors.


Assuntos
Técnicas Biossensoriais , Ácidos Siálicos , Ácidos Siálicos/química , Neuraminidase/química , Neuraminidase/metabolismo , Ácido N-Acetilneuramínico/química , Bactérias
2.
Glycobiology ; 34(5)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489772

RESUMO

Polysialic acid (polySia) is a linear polymer of α2,8-linked sialic acid residues that is of fundamental biological interest due to its pivotal roles in the regulation of the nervous, immune, and reproductive systems in healthy human adults. PolySia is also dysregulated in several chronic diseases, including cancers and mental health disorders. However, the mechanisms underpinning polySia biology in health and disease remain largely unknown. The polySia-specific hydrolase, endoneuraminidase NF (EndoN), and the catalytically inactive polySia lectin EndoNDM, have been extensively used for studying polySia. However, EndoN is heat stable and remains associated with cells after washing. When studying polySia in systems with multiple polysialylated species, the residual EndoN that cannot be removed confounds data interpretation. We developed a strategy for site-specific immobilization of EndoN on streptavidin-coated magnetic beads. We showed that immobilizing EndoN allows for effective removal of the enzyme from samples, while retaining hydrolase activity. We used the same strategy to immobilize the polySia lectin EndoNDM, which enabled the enrichment of polysialylated proteins from complex mixtures such as serum for their identification via mass spectrometry. We used this methodology to identify a novel polysialylated protein, QSOX2, which is secreted from the breast cancer cell line MCF-7. This method of site-specific immobilization can be utilized for other enzymes and lectins to yield insight into glycobiology.


Assuntos
Neuraminidase , Ácidos Siálicos , Adulto , Humanos , Ácidos Siálicos/química , Neuraminidase/metabolismo , Lectinas , Oxirredutases atuantes sobre Doadores de Grupo Enxofre
3.
Acc Chem Res ; 57(2): 234-246, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38127793

RESUMO

ConspectusSialic acids are fascinating negatively charged nine-carbon monosaccharides. Sialic acid-containing glycans and glycoconjugates are structurally diverse, functionally important, and synthetically challenging molecules. We have developed highly efficient chemoenzymatic strategies that combine the power of chemical synthesis and enzyme catalysis to make sialic acids, sialyl glycans, sialyl glycoconjugates, and their derivatives more accessible, enabling the efforts to explore their functions and applications. The Account starts with a brief description of the structural diversity and the functional importance of naturally occurring sialic acids and sialosides. The development of one-pot multienzyme (OPME) chemoenzymatic sialylation strategies is then introduced, highlighting its advantages in synthesizing structurally diverse sialosides with a sialyltransferase donor substrate engineering tactic. With the strategy, systematic access to sialosides containing different sialic acid forms with modifications at C3/4/5/7/8/9, various internal glycans, and diverse sialyl linkages is now possible. Also briefly described is the combination of the OPME sialylation strategy with bacterial sialidases for synthesizing sialidase inhibitors. With the goal of simplifying the product purification process for enzymatic glycosylation reactions, glycosphingolipids that contain a naturally existing hydrophobic tag are attractive targets for chemoenzymatic total synthesis. A user-friendly highly efficient chemoenzymatic strategy is developed which involves three main processes, including chemical synthesis of lactosyl sphingosine as a water-soluble hydrophobic tag-containing intermediate, OPME enzymatic extension of its glycan component with a single C18-cartridge purification of the product, followed by a facile chemical acylation reaction. The strategy allows the introduction of different sialic acid forms and diverse fatty acyl chains into the products. Gram-scale synthesis has been demonstrated. OPME sialylation has also been demonstrated for the chemoenzymatic synthesis of sialyl glycopeptides and in vitro enzymatic N-glycan processing for the formation of glycoproteins with disialylated biantennary complex-type N-glycans. For synthesizing human milk oligosaccharides (HMOs) which are glycans with a free reducing end, acceptor substrate engineering and process engineering strategies are developed, which involve the design of a hydrophobic tag that can be easily installed into the acceptor substrate to allow facile purification of the product from enzymatic reactions and can be conveniently removed in the final step to produce target molecules. The process engineering involves heat-inactivation of enzymes in the intermediate steps in multistep OPME reactions for the production of long-chain sialoside targets in a single reaction pot and with a single C18-cartridge purification process. In addition, a chemoenzymatic synthon strategy has been developed. It involves the design of a derivative of the sialyltransferase donor substrate precursor, which is tolerated by enzymes in OPME reactions, introduced to enzymatic products, and then chemically converted to the desired target structures in the final step. The chemoenzymatic synthon approach has been used together with the acceptor substrate engineering method in the synthesis of complex bacterial glycans containing sialic acids, legionaminic acids, and derivatives. The biocatalysts characterized and their engineered mutants developed by the Chen group are described, with highlights on synthetically useful enzymes. We anticipate further development of chemoenzymatic strategies and biocatalysts to enable exploration of the sialic acid space.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Ácidos Siálicos/química , Sialiltransferases , Oligossacarídeos , Glicoconjugados
4.
Carbohydr Res ; 535: 109020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150754

RESUMO

K63 capsular polysaccharide produced by Acinetobacter baumannii isolate LUH5551 (previously designated isolate O24) was re-examined using sugar analysis, Smith degradation, and one- and two-dimensional 1H and 13C NMR spectroscopy. Though previously reported as O24 consisting of linear tetrasaccharide units that include a 7-acetamido-5-acylamino form of 8-epilegionaminic acid [8eLeg5R7Ac, acylated at C5 with (S)-3-hydroxybutanoyl or acetyl (1:1)], the elucidated structure of the K63 type capsule was found to include a derivative of 5,7-diamino-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic (legionaminic) acid, Leg5Ac7R, where R is either (S)-3-hydroxybutanoyl or an acetyl group (∼1:1 ratio). This finding is consistent with the presence of the lgaABCHIFG gene module for Leg5Ac7R biosynthesis in the KL63 gene cluster at the capsular polysaccharide (CPS) biosynthesis K locus in the LUH5551 genome. The glycosyltransferases (Gtrs) and Wzy polymerase encoded by KL63 were assigned to linkages in the linear K63 tetrasaccharide unit and linkage of the K63 units.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Polissacarídeos/análise , Ácidos Siálicos/química , Família Multigênica , Polissacarídeos Bacterianos/química
5.
Nature ; 624(7990): 201-206, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794193

RESUMO

Coronavirus spike proteins mediate receptor binding and membrane fusion, making them prime targets for neutralizing antibodies. In the cases of severe acute respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus, spike proteins transition freely between open and closed conformations to balance host cell attachment and immune evasion1-5. Spike opening exposes domain S1B, allowing it to bind to proteinaceous receptors6,7, and is also thought to enable protein refolding during membrane fusion4,5. However, with a single exception, the pre-fusion spike proteins of all other coronaviruses studied so far have been observed exclusively in the closed state. This raises the possibility of regulation, with spike proteins more commonly transitioning to open states in response to specific cues, rather than spontaneously. Here, using cryogenic electron microscopy and molecular dynamics simulations, we show that the spike protein of the common cold human coronavirus HKU1 undergoes local and long-range conformational changes after binding a sialoglycan-based primary receptor to domain S1A. This binding triggers the transition of S1B domains to the open state through allosteric interdomain crosstalk. Our findings provide detailed insight into coronavirus attachment, with possibilities of dual receptor usage and priming of entry as a means of immune escape.


Assuntos
Betacoronavirus , Polissacarídeos , Ácidos Siálicos , Glicoproteína da Espícula de Coronavírus , Humanos , Regulação Alostérica , Betacoronavirus/química , Betacoronavirus/ultraestrutura , Resfriado Comum/virologia , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Evasão da Resposta Imune
6.
Chembiochem ; 24(24): e202300555, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37769151

RESUMO

Uridine diphosphate N-acetylglucosamine 2-epimerase (GNE) is a key enzyme in the sialic acid biosynthesis pathway. Sialic acids are primarily terminal carbohydrates on glycans and play fundamental roles in health and disease. In search of effective GNE inhibitors not based on a carbohydrate scaffold, we performed a high-throughput screening campaign of 68,640 drug-like small molecules against recombinant GNE using a UDP detection assay. We validated nine of the primary actives with an orthogonal real-time NMR assay and verified their IC50 values in the low micromolar to nanomolar range manually. Stability and solubility studies revealed three compounds for further evaluation. Thermal shift assays, analytical size exclusion, and interferometric scattering microscopy demonstrated that the GNE inhibitors acted on the oligomeric state of the protein. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) revealed which sections of GNE were shifted upon the addition of the inhibitors. In summary, we have identified three small molecules as GNE inhibitors with high potency in vitro, which serve as promising candidates to modulate sialic acid biosynthesis in more complex systems.


Assuntos
Carboidratos Epimerases , Ácido N-Acetilneuramínico , Humanos , Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Ácidos Siálicos/química , Carboidratos , Polissacarídeos
7.
Sci Rep ; 13(1): 12593, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537165

RESUMO

Sialic acids (Sias) are a class of sugar molecules with a parent nine-carbon neuraminic acid, generally present at the ends of carbohydrate chains, either attached to cellular surfaces or as secreted glycoconjugates. Given their position and structural diversity, Sias modulate a wide variety of biological processes. However, little is known about the role of Sias in human adipose tissue, or their implications for health and disease, particularly among individuals following different dietary patterns. The goal of this study was to measure N-Acetylneuraminic acid (Neu5Ac), N-Glycolylneuraminic acid (Neu5Gc), and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) concentrations in adipose tissue samples from participants in the Adventist Health Study-2 (AHS-2) and to compare the abundance of these Sias in individuals following habitual, long-term vegetarian or non-vegetarian dietary patterns. A method was successfully developed for the extraction and detection of Sias in adipose tissue. Sias levels were quantified in 52 vegans, 56 lacto-vegetarians, and 48 non-vegetarians using LC-MS/MS with Neu5Ac-D-1,2,3-13C3 as an internal standard. Dietary groups were compared using linear regression. Vegans and lacto-ovo-vegetarians had significantly higher concentrations of Neu5Ac relative to non-vegetarians. While KDN levels tended to be higher in vegans and lacto-ovo-vegetarians, these differences were not statistically significant. However, KDN levels were significantly inversely associated with body mass index. In contrast, Neu5Gc was not detected in human adipose samples. It is plausible that different Neu5Ac concentrations in adipose tissues of vegetarians, compared to those of non-vegetarians, reflect a difference in the baseline inflammatory status between the two groups. Epidemiologic studies examining levels of Sias in human adipose tissue and other biospecimens will help to further explore their roles in development and progression of inflammatory conditions and chronic diseases.


Assuntos
Ácidos Siálicos , Açúcares Ácidos , Humanos , Ácidos Siálicos/química , Cromatografia Líquida , Açúcares Ácidos/química , Espectrometria de Massas em Tandem , Tecido Adiposo , Dieta Vegetariana
8.
Nanomedicine ; 52: 102696, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394108

RESUMO

Diabetic nephropathy (DN) is an important complication of diabetes and is the main cause of end-stage renal disease. The pathogenesis of DN is complex, including glucose and lipid metabolism disorder, inflammation, and so on. Novel hybrid micelles loaded Puerarin (Pue) based on Angelica sinensis polysaccharides (ASP) and Astragalus polysaccharide (APS) were fabricated with pH-responsive ASP-hydrazone-ibuprofen (BF) materials (ASP-HZ-BF, SHB) and sialic acid (SA) modified APS-hydrazone-ibuprofen materials (SA/APS-HZ-BF, SPHB) by thin-film dispersion method. The SA in hybrid micelles can specifically bind to the E-selectin receptor which is highly expressed in inflammatory vascular endothelial cells. The loaded Pue could be accurately delivered to the inflammatory site of the kidney in response to the low pH microenvironment. Overall, this study provides a promising strategy for developing hybrid micelles based on natural polysaccharides for the treatment of diabetic nephropathy by inhibiting renal inflammatory reactions, and antioxidant stress.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Portadores de Fármacos , Selectina E , Isoflavonas , Concentração de Íons de Hidrogênio , Selectina E/metabolismo , Micelas , Neuropatias Diabéticas/tratamento farmacológico , Isoflavonas/administração & dosagem , Angelica sinensis/química , Astrágalo/química , Polissacarídeos/química , Rim , Inflamação/tratamento farmacológico , Ibuprofeno/química , Ácidos Siálicos/química , Ligação Proteica , Diabetes Mellitus Experimental/induzido quimicamente , Estreptozocina , Animais , Camundongos , Masculino , Camundongos Endogâmicos C57BL
9.
Carbohydr Res ; 531: 108892, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37429229

RESUMO

Sialic acid, a monosaccharide containing nine carbon atoms, is widely distributed in eukaryotic cells. The bound sialic acids are mainly present at the glycan ends of glycoconjugates via α2-3 or α2-6 glycosidic bonds, and alterations in their expression levels and linkage types are associated with the progress of many diseases and tumors. The present study provides a new strategy for quantification of α2,3- and α2,6-linked sialic acids in sialylated glycoproteins. In fact, quantification of α2,3-linked sialic acids were based on the difference of the bound sialic acids in the sample before and after treatment with α2-3 neuraminidase, whereas the α2,6-linked sialic acids were equal to the bound sialic acids in the α2-3 neuraminidase-treated sample. Subsequently, α2,3/6-linked sialic acids in salivary glycoproteins from healthy volunteers and diabetic patients were quantified in accordance with this method. This work provides an accurate method for the quantification of α2,3- and α2,6-linked sialic acids in the sialoglycoproteins, which is more instructive for understanding the biological roles of α2,3/6-linked sialic acid in sialoglycoproteins.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Ácidos Siálicos/química , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Glicoproteínas/metabolismo , Sialoglicoproteínas
10.
Anal Chem ; 95(19): 7475-7486, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126482

RESUMO

Sialic acid isomers attached in either α2,3 or α2,6 linkage to glycan termini confer distinct chemical, biological, and pathological properties, but they cannot be distinguished by mass differences in traditional mass spectrometry experiments. Multiple derivatization strategies have been developed to stabilize and facilitate the analysis of sialic acid isomers and their glycoconjugate carriers by high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry workflows. Herein, a set of novel derivatization schemes are described that result in the introduction of bioorthogonal click chemistry alkyne or azide groups into α2,3- and α2,8-linked sialic acids. These chemical modifications were validated and structurally characterized using model isomeric sialic acid conjugates and model protein carriers. Use of an alkyne-amine, propargylamine, as the second amidation reagent effectively introduces an alkyne functional group into α2,3-linked sialic acid glycoproteins. In tissues, serum, and cultured cells, this allows for the detection and visualization of N-linked glycan sialic acid isomers by imaging mass spectrometry approaches. Formalin-fixed paraffin-embedded prostate cancer tissues and pancreatic cancer cell lines were used to characterize the numbers and distribution of alkyne-modified α2,3-linked sialic acid N-glycans. An azide-amine compound with a poly(ethylene glycol) linker was evaluated for use in histochemical staining. Formalin-fixed pancreatic cancer tissues were amidated with the azide amine, reacted with biotin-alkyne and copper catalyst, and sialic acid isomers detected by streptavidin-peroxidase staining. The direct chemical introduction of bioorthogonal click chemistry reagents into sialic acid-containing glycans and glycoproteins provides a new glycomic tool set to expand approaches for their detection, labeling, visualization, and enrichment.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Ácidos Siálicos/química , Polissacarídeos/química , Linhagem Celular Tumoral
11.
Nature ; 618(7965): 590-597, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258672

RESUMO

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Assuntos
Anticorpos Antivirais , Especificidade de Anticorpos , Vírus da Influenza A , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana , Mimetismo Molecular , Neuraminidase , Animais , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Especificidade de Anticorpos/imunologia , Arginina/química , Domínio Catalítico , Hemaglutininas Virais/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/enzimologia , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/enzimologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/antagonistas & inibidores , Neuraminidase/química , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Estações do Ano , Ácidos Siálicos/química
12.
Carbohydr Res ; 527: 108804, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37031650

RESUMO

In nature, almost all cells are covered with a complex array of glycan chain namely sialic acids or nuraminic acids, a negatively charged nine carbon sugars which is considered for their great therapeutic importance since long back. Owing to its presence at the terminal end of lipid bilayer (commonly known as terminal sugars), the well-defined sialosides or sialoconjugates have served pivotal role on the cell surfaces and thus, the sialic acid-containing glycans can modulate and mediate a number of imperative cellular interactions. Understanding of the sialo-protein interaction and their roles in vertebrates in regard of normal physiology, pathological variance, and evolution has indeed a noteworthy journey in medicine. In this tutorial review, we present a concise overview about the structure, linkages in chemical diversity, biological significance followed by chemical and enzymatic modification/synthesis of sialic acid containing glycans. A more focus is attempted about the recent advances, opportunity, and more over growing impact of sialosides and sialoconjugates in future drug discovery and development.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Animais , Ácido N-Acetilneuramínico/química , Ácidos Siálicos/química , Polissacarídeos/química , Sialiltransferases/metabolismo , Açúcares
13.
ACS Chem Biol ; 18(3): 605-614, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36792550

RESUMO

Sialic acid recognition and hydrolysis are essential parts of cellular function and pathogen infectivity. Neuraminidases are enzymes that detach sialic acid from sialosides, and their inhibition is a prime target for viral infection treatment. The connectivity and type of sialic acid influence the recognition and hydrolysis activity of the many different neuraminidases. The common strategies to evaluate neuraminidase activity, recognition, and inhibition rely on extensive labeling and require a large amount of sialylated glycans. The above limitations make the effort of finding viral inhibitors extremely difficult. We used synthetic sialylated glycans and developed a label-free electrochemical method to show that sialoside structural features lead to selective neuraminidase biosensing. We compared Neu5Ac to Neu5Gc sialosides to evaluate the organism-dependent neuraminidase selectivity-sensitivity relationship. We demonstrated that the type of surface and the glycan monolayer density direct the response to either binding or enzymatic activity. We proved that while the hydrophobic glassy carbon surface increases the interaction with the enzyme hydrophobic interface, the negatively charged interface of the lipoic acid monolayer on gold repels the protein and enables biocatalysis. We showed that the sialoside monolayers can serve as tools to evaluate the inhibition of neuraminidases both by biocatalysis and molecular recognition.


Assuntos
Ácido N-Acetilneuramínico , Neuraminidase , Neuraminidase/metabolismo , Biocatálise , Ácidos Siálicos/química , Polissacarídeos
14.
J Virol ; 97(3): e0146322, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36779754

RESUMO

Entry of influenza A viruses (IAVs) into host cells is initiated by binding to sialic acids (Sias), their primary host cell receptor, followed by endocytosis and membrane fusion to release the viral genome into the cytoplasm of the host cell. Host tropism is affected by these entry processes, with a primary factor being receptor specificity. Sias exist in several different chemical forms, including the hydroxylated N-glycolylneuraminic acid (Neu5Gc), which is found in many hosts; however, it has not been clear how modified Sias affect viral binding and entry. Neu5Gc is commonly found in many natural influenza hosts, including pigs and horses, but not in humans or ferrets. Here, we engineered HEK293 cells to express the hydoxylase gene (CMAH) that converts Neu5Ac to Neu5Gc, or knocked out the Sia-CMP transport gene (SLC35A1), resulting in cells that express 95% Neu5Gc or minimal level of Sias, respectively. H3N2 (X-31) showed significantly reduced infectivity in Neu5Gc-rich cells compared to wild-type HEK293 (>95% Neu5Ac). To determine the effects on binding and fusion, we generated supported lipid bilayers (SLBs) derived from the plasma membranes of these cells and carried out single particle microscopy. H3N2 (X-31) exhibited decreased binding to Neu5Gc-containing SLBs, but no significant difference in H3N2 (X-31)'s fusion kinetics to either SLB type, suggesting that reduced receptor binding does not affect subsequent membrane fusion. This finding suggests that for this virus to adapt to host cells rich in Neu5Gc, only receptor affinity changes are required without further adaptation of virus fusion machinery. IMPORTANCE Influenza A virus (IAV) infections continue to threaten human health, causing over 300,000 deaths yearly. IAV infection is initiated by the binding of influenza glycoprotein hemagglutinin (HA) to host cell sialic acids (Sias) and the subsequent viral-host membrane fusion. Generally, human IAVs preferentially bind to the Sia N-acetylneuraminic acid (Neu5Ac). Yet, other mammalian hosts, including pigs, express diverse nonhuman Sias, including N-glycolylneuraminic acid (Neu5Gc). The role of Neu5Gc in human IAV infections in those hosts is not well-understood, and the variant form may play a role in incidents of cross-species transmission and emergence of new epidemic variants. Therefore, it is important to investigate how human IAVs interact with Neu5Ac and Neu5Gc. Here, we use membrane platforms that mimic the host cell surface to examine receptor binding and membrane fusion events of human IAV H3N2. Our findings improve the understanding of viral entry mechanisms that can affect host tropism and virus evolution.


Assuntos
Interações entre Hospedeiro e Microrganismos , Vírus da Influenza A Subtipo H3N2 , Ácidos Siálicos , Internalização do Vírus , Animais , Humanos , Células HEK293 , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Fusão de Membrana , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/farmacologia , Imagem Individual de Molécula , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia
15.
Glycobiology ; 33(2): 99-103, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36648443

RESUMO

Nonulosonic acids or non-2-ulosonic acids (NulOs) are an ancient family of 2-ketoaldonic acids (α-ketoaldonic acids) with a 9-carbon backbone. In nature, these monosaccharides occur either in a 3-deoxy form (referred to as "sialic acids") or in a 3,9-dideoxy "sialic-acid-like" form. The former sialic acids are most common in the deuterostome lineage, including vertebrates, and mimicked by some of their pathogens. The latter sialic-acid-like molecules are found in bacteria and archaea. NulOs are often prominently positioned at the outermost tips of cell surface glycans, and have many key roles in evolution, biology and disease. The diversity of stereochemistry and structural modifications among the NulOs contributes to more than 90 sialic acid forms and 50 sialic-acid-like variants described thus far in nature. This paper reports the curation of these diverse naturally occurring NulOs at the NCBI sialic acid page (https://www.ncbi.nlm.nih.gov/glycans/sialic.html) as part of the NCBI-Glycans initiative. This includes external links to relevant Carbohydrate Structure Databases. As the amino and hydroxyl groups of these monosaccharides are extensively derivatized by various substituents in nature, the Symbol Nomenclature For Glycans (SNFG) rules have been expanded to represent this natural diversity. These developments help illustrate the natural diversity of sialic acids and related NulOs, and enable their systematic representation in publications and online resources.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Animais , Ácidos Siálicos/química , Polissacarídeos/química , Monossacarídeos , Catalogação
16.
Glycoconj J ; 40(3): 269-276, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36695939

RESUMO

The structure and properties of a group of gangliosides modified by mild alkaline treatment are discussed. We will present the occurrence and the structure of gangliosides carrying the N-acetyneuraminic acid O-acetylated in position 9, the Neu5,9Ac2, and of gangliosides carrying a sialic acid that forms a lactone ring. Starting from biochemical data we will discuss the possible biochemical role played by these gangliosides in the processes of cell signaling and maintenance of brain functions.


Assuntos
Gangliosídeos , Ácido N-Acetilneuramínico , Gangliosídeos/química , Ácidos Siálicos/química , Acetilação
17.
Int J Biol Macromol ; 230: 123151, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610578

RESUMO

Polysialic acid (PSA) is a straight-chain homoglycan linked by N-acetylneuraminic acid monomers via α-2, 8- or α-2, 9-glycosidic bonds. As a negatively charged non-glycosaminoglycan, PSA has the remarkable characteristics of non-immunogenicity and biodegradation. Although different in class, PSA is similar to poly(ethylene glycol), and was originally used to increase the stability of the delivery system in circulation to prolong the half-life. As research continues, PSA's application potential in the pharmaceutical field becomes increasingly prominent. It can be used as a biomaterial for protein polysialylation and tissue engineering, and it can be used alone or with other materials to develop multifunctional drug delivery systems. In this article, the results of the bioproduction and biofunction of PSA are introduced, the common strategies for chemical modification of PSA are summarized, and the application progress of PSA-based drug delivery systems is reviewed.


Assuntos
Sistemas de Liberação de Medicamentos , Ácidos Siálicos , Sistemas de Liberação de Medicamentos/métodos , Ácidos Siálicos/química , Ácido N-Acetilneuramínico , Meia-Vida
18.
ACS Chem Biol ; 18(1): 41-48, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36577399

RESUMO

Sialic acids are key mediators of cell function, particularly with regard to cellular interactions with the surrounding environment. Reagents that modulate the display of specific sialyl glycoforms at the cell surface would be useful biochemical tools and potentially allow for therapeutic intervention in numerous challenging chronic diseases. While multiple strategies are being explored for the control of cell surface sialosides, none that shows high selectivity between sialyltransferases or that targets a specific sialyl glycoform has yet to emerge. Here, we describe a strategy to block the formation of α2,8-linked sialic acid chains (oligo- and polysialic acid) through the use of 8-keto-sialic acid as a chain-terminating metabolic inhibitor that, if incorporated, cannot be elongated. 8-Keto-sialic acid is nontoxic at effective concentrations and serves to block polysialic acid synthesis in cancer cell lines and primary immune cells, with minimal effects on other sialyl glycoforms.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Ácidos Siálicos/química , Sialiltransferases/metabolismo , Membrana Celular/metabolismo
19.
ACS Infect Dis ; 9(1): 33-41, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36455156

RESUMO

Sialidases or neuraminidases are sialic-acid-cleaving enzymes that are expressed by a broad spectrum of organisms, including pathogens. In nature, sialic acids are monosaccharides with diverse structural variations, but the lack of novel probes has made it difficult to determine how sialic acid modifications impact the recognition by sialidases. Here, we used a chemoenzymatic synthon strategy to generate a set of α2-3- and α2-6-linked sialoside probes that contain 7-N-acetyl or 7,9-di-N-acetyl sialic acid as structure mimics for those containing the less stable naturally occurring 7-O-acetyl- or 7,9-di-O-acetyl modifications. These probes were used to compare the substrate specificity of several sialidases from different origins. Our results show that 7-N-acetyl sialic acid was readily cleaved by neuraminidases from H1N1 and H3N2 influenza A viruses, but not by sialidases of human or bacterial origin, thereby indicating that the influenza enzymes possess a distinctive and more promiscuous substrate binding pocket.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Humanos , Ácido N-Acetilneuramínico/metabolismo , Vírus da Influenza A/metabolismo , Neuraminidase , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo
20.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361885

RESUMO

Glycans are involved in many fundamental cellular processes such as growth, differentiation, and morphogenesis. However, their broad structural diversity makes analysis difficult. Glycomics via mass spectrometry has focused on the composition of glycans, but informatics analysis has not kept pace with the development of instrumentation and measurement techniques. We developed Toolbox Accelerating Glycomics (TAG), in which glycans can be added manually to the glycan list that can be freely designed with labels and sialic acid modifications, and fast processing is possible. In the present work, we improved TAG for large-scale analysis such as cohort analysis of serum samples. The sialic acid linkage-specific alkylamidation (SALSA) method converts differences in linkages such as α2,3- and α2,6-linkages of sialic acids into differences in mass. Glycans modified by SALSA and several structures discovered in recent years were added to the glycan list. A routine to generate calibration curves has been implemented to explore quantitation. These improvements are based on redefinitions of residues and glycans in the TAG List to incorporate information on glycans that could not be attributed because it was not assumed in the previous version of TAG. These functions were verified through analysis of purchased sera and 74 spectra with linearity at the level of R2 > 0.8 with 81 estimated glycan structures obtained including some candidate of rare glycans such as those with the N,N'-diacetyllactosediamine structure, suggesting they can be applied to large-scale analyses.


Assuntos
Glicômica , Ácido N-Acetilneuramínico , Humanos , Glicômica/métodos , Polissacarídeos/química , Ácidos Siálicos/química , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...